
M.C. Bettoni -Kant and the software crisis - 1993/1995 1

Kant Yearbook (Kantovski sbornik), 19, 131-137 (1995) - AI & Society 9 (1995) p. 396-401.

KANT AND THE SOFTWARE CRISIS1

Suggestions for the construction of human-centred software systems2

MARCO C. BETTONI

1.What can I know ?
2.What ought I to do ?
3.What may I hope ?

Immanual Kant, 1787.

ABSTRACT

In this article I deal with the question "How could we renew and enrich computer technology
with Kant's help ?". By this I would like to invite computer scientists and engineers to initiate or
intensify their cooperation with Kant experts. What I am looking for is a better "method of
definition"3 for software systems, particularly for the development of object-oriented and
knowledge-based systems. After a description of the "software crisis", I deal first with the
question why this crisis could not yet be overcome. A way out of this software crisis can be
expected from systems which are adapted to the human faculty of thinking. I show which
foundation is in my opinion necessary and sketch the principles according to which a "human-
centred" method of definition for such systems could be developed on that foundation with
Kant's help.

Keywords: Software Crisis, AI Software Engineering, Human-Centred Software Design, Kantian
Philosophy, Constructivism, Human Thinking Models.

1. INTRODUCTION

Up to now computer science in general and Artificial Intelligence4 in particular have
been dominated by technology-centred approaches. But this makes it intrinsically difficult to
develop systems which are adapted to the human faculty of thinking [Bettoni & Bernhard, 1994]. In
my search of ideas for the construction of human-centred software systems I came across Kant's
work5, especially his models of knowledge and reasoning [Kant, 1787, 1790].

 1 Not the business crisis on the software market but a quality crisis.
 2 Revised version of a paper presented at the VI. Kant Workshop (Section 4: Logical Kant studies), University of
Kaliningrad and Russian Kant Society, September 21-24, Svetlogorsk (Königsberg/Kaliningrad, Russia).
 3 "Definition" collects here 3 phases: specification of the requirements, of the system concept and of the
preliminary design [Hubka, 1984].
 4 AI means here that discipline of computer science whose main purpose is to realise on the computer cognitive
functions, processes and performances "at which, at the moment people are better" [Rich, 1983].
 5 Kant distinguishes in the human being 3 cognitive dimensions [Kant, 1787, p.833] which are used as follows in
my approach: 1. the knowledge dimension (mental aspects, as the faculty of thinking), 2. the ought-to-do dimension
(ethical-practical aspects, here for instance participation, work organization, etc.), 3. the hope dimension (results,
which I may expect if I do what I ought to).

M.C. Bettoni -Kant and the software crisis - 1993/1995 2

2. THE SOFTWARE CRISIS: FACTS, DEFECTS AND STEPS TAKEN

About 20 years ago when I had my first experiences in the use of large computer systems
and software products at the Computer Center of the ETH Zürich, I quickly realised that the
quality of those products fell far shorter of that I required. But the majority of the users seemed
at that time to be happy.
To me, up to now, although hardware has become much more powerful, the situation has not
really improved. For the majority of the users instead it has become worse: although their
requirements have become much more demanding, the quality of software products did not
increase very much.
This software crisis, that is the fact that the quality of current software is in general6 insufficient,
has been recently reported by A. Sage and J. Palmer [Sage & Palmer, 1990, p.20]. According to these
authors currently only 2% of the software produced can be used productively after delivery, 3%
can be used only after modifications, 19% requires major redesings, 47% is no longer used a
short time after delivery - 21% because it is unsound, 26% because it is incorrect - and 29% is so
bad, that it is undeliverable.
Many other studies on software productivity, which analyse this situation, mention the following
central defects:

1) software is expensive, 2) it very often greatly exceeds planned costs, 3) its delivery is
too late, 4) its documentation is poor, 5) it cannot be integrated, 6) it cannot be moved to
a new environment or 7) be improved to evolve along with the user's needs, 8) its
maintenance is difficult and error-prone, 9) the performances are unstable, 10) they do
not correspond to specifications, 11) the software capacities fall short of what is
expected and demanded, 12) software is difficult to use and 13) the system and software
requirements used to develop the software system do not correspond to the needs of the
users.

The same studies connect these defects with steps taken in the software production, i.e.: A) with
methods and tools of development, B) with methodology, C) with project management. The
discipline which collects all these 3 domains and has the task of showing ways and means for
the improvement of product quality, is called Software Engineering. But as the current software
crisis shows, software engineering has not yet been successful at overcoming the problems noted
above. In my opinion one major reason lies in an incomplete analysis of the situation, in which
one explores only defects and the corresponding steps taken, whereas the approaches which lie
behind these steps are almost never considered: but it is precisely the analysis of these
approaches which cannot be avoided, if one wants to improve the steps which depend on them.

3. CAUSES OF THE SOFTWARE CRISIS

Many of the software defects just cited have to do with approaches and steps taken in the
domain of methods of definition. In this area great efforts have been put forth as it is shown by
the very widespread methods of object-oriented and knowledge-based software development.
These methods should contribute to improve software quality by making possible systems which
are adapted to the human faculty of thinking.

 6 Client specific, domain specific and standard software systems.

M.C. Bettoni -Kant and the software crisis - 1993/1995 3

Their main strength lies in the fact that modelling plays a primary role in them [Coad & Yourdon,
1990, p.9]. But the approach to modelling as well as the underlying approach to knowledge has
not yet been questioned critically enough in these methods. This is why, up to now, it has not yet
been possible to exploit the main strength of these two methods: this is in my opinion the main
methodological reason why many essential software defects still exist, although these methods
are very widespread.
Two examples may show you the currently established approach to modelling in software
engineering:

1. In his report to the project "Information model for manufacturing process control" -
which has been developed with a mixed method, both object-oriented and knowledge-
based - the author writes [Dangelmeier, 1993, p.222]: "If one 'lifts the roof off the factory' - so
to say -, then one will find objects ready-made, with different values for their
characteristics, that is with different states."

2. The author of the book "Object-orientied software development", a world famous
software expert, takes a position concerning the controversial question, how objects of a
system can be found. He writes [Meyer, 1990, p.55]: "In the physical and abstract reality
objects are modelled and waiting to be read."

For these two authors, modelling is merely the "finding & picking up" of objects that are waiting
for us ! But, if objects are merely waiting to be found and picked up, then this necessarily
implies the hypothesis that the order of things which is embodied in our knowledge exists
independently of us7.
This position, which I would call, with reference to Kant, cognitive dogmatism [Kant, 1787,
p.XXXV], entails or at least grounds the conviction that a good model must be an exact picture of
that order of things. If this approach to modelling is used in software engineering, that is in the
relationships between developer, user and software system, then this yields the following
implicit requirements:

1. the user must explain to the developer the "order of things";
2. the developer must reproduce the "order of things" in the system;
3. the system must reflect the "order of things" to the user.

A critical review of the practice shows on the contrary that with current object-oriented and
knowledge-based methods we do not succeed in fulfilling these 3 requirements. Each of the 3
relationships presents us with a huge gap:

1. a gap between user and developer: the user has great difficulties in presenting his
requirements and expert knowledge in such a way that the developer can
understand them.

2. a gap between developer and software system: the developer has great
difficulties in putting into a system model the expert knowledge and the
requirements of the user.

3. a gap between software system and user: the system is not well enough adapted
to the user's faculty and ways of thinking.

 7 This hypothesis constitutes - as far as I can see - the foundation of the established sciences (knowledge
production) and technologies (knowledge application).

M.C. Bettoni -Kant and the software crisis - 1993/1995 4

This shows that object-oriented and knowledge-based methods cannnot yet fulfill their aim,
which consists in making systems possible which are adapted to the human faculty of thinking,
and it leads me to presume that the main methodological reason for this lies in finding an
picking up as a modelling approach.

4. A HUMAN-Centred MODELLING APPROACH

If human-centred software systems have to be developed, i.e. systems which are as much
as possible adapted to our faculty of thinking, then a new modelling approach must be devised.
If this does not succeed, then the developer will hold on to the traditional attitude "I am
constructing a machine" [Wirth, 1984, p.48], and this will in turn strengthen the domination of
technology-centred, machine-based concepts.
The foundation of my modelling approach was formulated already more than 200 years ago by
Kant in his "Critique of pure reason" as follows:

"Hitherto it has been assumed that all our knowledge must conform to objects. But all
the attempts to establish something a priori about objects by means of concepts, ...,
have, on this assumption, ended in failure. Let us therefore make trial whether we may
not have more success ... if we suppose that objects must conform to our faculty of
knowing." [Kant, 1787, p.XVI].

For my purposes Kant's suggestion to suppose that objects must conform to our faculty of
knowing constitutes the gateway to his Critique. The basic knowledge principle I derive from it
is as follows:

"The order of things an systems which is embodied in our knowledge depends on us and
is made by us: it is aligned with (conforms to) our way of processing knowledge (our
faculty of thinking)."

This position, which approaches Ernst von Glasersfeld's "Radical Constructivism" [von Glasersfeld,
1987], is also the basis of my modelling principle:

"A good model is not the picture of an independent order, but a working8 (viable)
formalisation of the order which we ourselves generate in knowledge."

By means of these 2 principles I can now reformulate the previous examples as follows:

1. "If we 'lift the roof off the factory', then we will not find any ready-made order, but we
will only obtain that order - i.e. systems, objects, characteristics and states - which we
ourselves generate in knowledge."

2. "The physical reality is not already modelled in terms of objects. Objects are given to us
as objects of experience only after we have fixed an order for them in knowledge: we
can 'read' objects only after we have ourselves 'written' them."

 8 A formalisation which fulfills the aim for which it is beeing used.

M.C. Bettoni -Kant and the software crisis - 1993/1995 5

In knowledge-based methods (systems) the model is called knowledge base and is composed
mainly of so-called facts and rules. The established modelling approach is here the same as in
object-oriented methods9: modelling is conceived as a finding and picking up of states of affairs
("Sachverhalte") which exist independently of us. My modelling approach, which I call
"construct-oriented modelling", considers facts and rules of a knowledge base as working
formalisations of "states of affairs" and these states of affairs as "viable constructs", i.e. as
something which we make (construct) ourselves through our thinking, through the organisation
of our interactions with the environment in a way which works as well as possible (viable way).

5. RENEWING AND ENRICHING SW-DEVELOPMENT WITH KANT'S HELP

The principle of construct-oriented modelling constitutes the first building block of my
method of definition for software systems: in my work as a software and knowledge engineer I
have already experienced many times that it does work. A second building block, which is
tightly connected to the first consists in the following hypothesis:

"The approximation, in the computer, of the way in which we generate an 'order of
things' in knowledge, is a necessary adaptation of software systems to the human faculty
of thinking."

A model of the way in which we - by means of our knowledge processing - make an order of
things, must fulfill two basic requirements. They are:

1. Knowledge processing must be considered primarily as synthetic-constitutive (instead
of analytic-transformative).

2. Any system (living or non-living), which performs primarily synthetic acts, must be
modelled as an organism, not as a machine (organism as a condition of synthesis).

This is now the place where computer technology could be further improved with Kant's help10.
In the "Analytic of concepts" Kant develops a theory of mental activity which - in my
interpretation - fulfills the first requirement [Kant, 1787]; and in the "Critique of teleological
judgement" I see that the foundations which are necessary to fulfill the second requirement have
been sufficiently elaborated and could be used to design an artificial, non-living organism [Kant,
1790].

6. CONCLUSION

We still have a long way to go in order to develop with Kant's help a human-centred
method of definition for software systems. My concern in this article has been primarily to show
the direction we must travel, in the hope that this contribution may stimulate computer
scientists, engineers and Kant experts to initiate an exicitng transdisciplinary cooperation.

 9 "The real world is made of objects and their relations. The corrspondent symbolic world is made of object
symbols and of relational symbols." [Lusti, 1990, p.17].
 10 Currently AI cannot yet fulfill these 2 requirements because its approaches are either restricted to the
transformative paradigm (analytical-transformative in symbolic AI and emergent-transformative in Connectionism)
or strictly consider that synthetic-constitutive processing can take place only in living organisms [Bourgine &
Varela, 1992].

M.C. Bettoni -Kant and the software crisis - 1993/1995 6

REFERENCES

Bettoni, M. & Bernhard, W. 'Simulation with MASTER'. In: Liebowitz, J. (ed.), Moving Towards Expert
Systems Globally in the 21st Century, Proc. 2nd World Congress on Expert Systems, Lisboa (P), 10.-
14. Jan. 1994, Macmillan New Media, Cambridge (MA), 1994.

Bourgine P. & Varela, F. (eds.), Proc. 1st European Conference on Artificial Life (ECAL '91), MIT
Press, Cambridge, MA, 1992.

Coad, P. & Yourdon, E., Object-Oriented Analysis. Prentice Hall, Englewood Cliffs, NJ, 1990.
Dangelmeier, W., 'Objektorientierter Modellierungsansatz für eine regelbasierte Fertigungssteuerng.',

Zeitschrift für wirtschaftliche Fertigung und Automatisierung ZwF, 88 (1993) 5, 222-225.
Hubka, V., Theorie Technischer Systeme: Grundlagen einer wissenschaftlichen Konstruktionslehre. 2.

Aufl., Springer-Verlag, Berlin, 1984.
Kant, I., Kritik der reinen Vernunft, Riga, 1787. I.Heidemann (Hrsg.), Reclam, Stuttgart, 1966.
Kant, I., Kritik der Urteilskraft, 1790. W.Weischedel (Hrsg.), Werkausgabe, Band X, Suhrkamp, 5.Aufl.,

Frankfurt a/M, 1981.
Lusti, M., Wissensbasierte Systeme: Algorithmen, Datenstrukturen und Werkzeuge. BI, Mannheim,

1990.
Meyer, B., Objektorientierte Softwareentwicklung, Hanser Verlag, München, 1990.
Rich, E., Artificial Intelligence. McGraw-Hill, New York, 1983.
Sage, Andrew P. & Palmer, James D., Software Systems Engineering. John Wiley & Sons, New York,

1990.
von Glasersfeld, E., The construction of knowledge. Intersystems Publications, Salinas, CA, 1988.
Wirth, N., 'Data structures and algorithms'. Scientific Am., 251 (1984) 3, 48-57.

